[1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: Cancer J. Clin. (2018) 68: 394-424.
[2] Inci SZ, Selma S, Semra C, Kevser E. Synthesis of 4-aryl-3, 4-dihydropyrimidin-2(1H)-thione derivatives as potential calcium channel blockers. Bioorg. Med. Chem. (2006) 14 (24): 8582.
[3] Ekoue-Kovi K, Yearick K, Iwaniuk DP, Natarajan JK, Alumasa J, Dios AC, Roepe PD, Wolf C. Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas. Bioorg. Med. Chem. (2009) 17 (1): 270-283.
[4] Chibale K, Moss JR, Blackie M, Schalkwyk D, Smith PJ. New amine and urea analogs of ferrochloroquine: synthesis, antimalarial activity in vitro and electrochemical studies. Tetrahedron Lett. (2000) 41 (32): 6231-6235.
[5] Desai PK, Desai P, Machhi D, Desai CM, Patel D. Quinoline derivatives as antitubercular/antibacterial agents. Indian J. Chem. Sect. B (1996) 35: 871-873.
[6] Roma G, Di-Braccio M, Grossi G, Mattioli F, Ghia M. 9-Substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Euro. J. Med. Chem. (2000) 35 (11): 1021-1035.
[7] Vargas LY, Castelli MV, Kouznetsov VV, Urbina JM, Lopez SN, Sortino M, Enriz RD, Ribas JC, Zacchino S. In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers. Bioorg. Med. Chem. (2003) 11 (7): 1531-1550.
[8] Broch S, Aboab B, Anizon F, Moreau P. Synthesis and in vitro antiproliferative activities of quinoline derivatives. Eur. J. Med. Chem. (2010) 45 (4): 1657-1662.
[9] Kidwai M, Bhushan KR, Sapra P, Saxena RK, Gupta R. Alumina-supported synthesis of antibacterial quinolines using microwaves. Bioorg. Med. Chem. (2000) 8 (1): 69-72.
[10] Adana AK, Mirza Y, Aneja KR, Prakash O. Hypervalent iodine mediated synthesis of 1-aryl/hetryl-1,2,4-triazolo[4,3-a]pyridines and 1-aryl/hetryl-5-methyl-1,2,4-triazolo[4,3-a]quinolines as antibacterial agents. Euro. J. Med. Chem. (2003) 38 (5): 533-536.
[11] Yu XY, Hill JM, Yu G, Yang Y, Kluge AF, Keith D, Finn J, Gallant P, Silverman J, Lim A. A series of quinoline analogues as potent inhibitors of C albicans prolyl t-RNA synthetase. Bioorg. Med. Chem. Lett. (2001) 11 (4): 541-544.
[12] Ghorab MM, Alsaid MS. Anti-breast cancer activity of some novel quinoline derivatives. Acta. Pharm. (2015) 65 (3): 271-283.
[13] Yang Y, Shi L, Zhou Y, Li HQ, Zhu ZW, Zhu HL. Design, synthesis and biological evaluation of quinoline amide derivatives as novel VEGFR-2 inhibitors. Bioorg. Med. Chem. Lett. (2010) 20 (22): 6653-6656.
[14] Narwal M, Venkannagari H, Lehtio L. Structural Basis of Selective Inhibition of Human Tankyrases. J. Med. Chem. (2012) 55 (3): 1360-1367.
[15] Matsuno K, Masuda Y, Uehara Y, Sato H, Muroya A, Takahashi O, Yokotagawa T, Furuya T, Okawara T, Otsuka M, Ogo N, Ashizawa T, Oshita C, Tai S, Ishii H, Akiyama Y, Asai A. Identification of a New Series of STAT3 Inhibitors by Virtual Screening. ACS Med. Chem. Lett. (2010) 1 (8): 371-375.
[16] Wang X, Xie X, Cai Y, Yang X, Li J, Li Y, Chen W, He M. Synthesis and Antibacterial Evaluation of Some New 2-Phenyl-quinoline-4-carboxylic Acid Derivatives. Molecules (2016) 21 (3): 340.
[17] Benzerka S, Bouraiou A, Bouacida S, Roisnel T, Bentchouala C, Smati F, Belfaitah A. Synthesis of New 3-heteroaryl-2-phenylquinolines and their Pharmacological Activity as Antimicrobial Agents. Lett. Org. Chem. (2013) 10 (2): 94-99.
[18] Labuschagne A, Lall N, Mphahlele MJ. Evaluation of Structurally Related 3-Substituted 4-Amino-2-arylquinolines and 2-Aryl-4-methoxyquinolines for Potential Antimycobacterial Activity. Int. Arabic J. Antimicrob. Agents (2013) 3 (2): 1-12.
[19] Benzerka S, Bouraiou A, Bouacida S, Roisnel T, Bentchouala C, Smati F, Belfaitah A. New 2-Phenylquinoline Derivatives: Synthesis and Preliminary Evaluation as Antimicrobial Agents. Lett. Org. Chem. (2012) 9 (5): 309-313.
[20] Aboutorabzadeh SM, Mosaffa F, Hadizadeh F, Ghodsi R. Design, synthesis, and biological evaluation of 6-methoxy-2-arylquinolines as potential P-glycoprotein inhibitors. Iran. J. Basic Med. Sci. (2018) 21 (1): 9-18.
[21] Ghodsi R, Azizi E, Ferlin MG, Pezzi V, Zarghi A. Design, Synthesis and Biological Evaluation of 4-(Imidazolylmethyl)-2-arylquinoline Derivatives as Aromatase Inhibitors and Anti-breast Cancer Agents. Lett. Drug Des. Discov. (2016) 13 (1): 89-97.
[22] Zimichev AV, Zemtsova MN, Kashaev AG, Klimochkin YN. Synthesis and antituberculous activity of quinoline isosteres of isoniazid. Pharm. Chem. J. (2011) 45 (4): 217-219.
[23] Zhu L, Luo K, Li K, Jin Y, Lin J. Design, synthesis and biological evaluation of 2- phenylquinoline-4-carboxamide derivatives as a new class of tubulin polymerization inhibitors. Bioorg. Med. Chem. (2017) 25 (21): 5939-5951.
[24] Erugu Y, Sangepu B, Gandu B, Anupoju G, Jetti VR. Design, synthesis of novel quinoline-4-carboxylic acid derivatives and their antibacterial activity supported by molecular docking studies. World J. Pharm. Pharm. Sci. (2014) 3 (12): 1612-1634.