[1] Cēbere B, Faltiņa E, Zelčāns N, Kalniņa D. Toxicity Tests for Ensuring Succesful Industrial Wastewater Treatment Plant Operation. Environ. Clim. Technol. (2009) 3: 41-47.
[2] Reemtsma T, Putschew A, Jekel M. Industrial wastewater analysis: a toxicity-directed approach. J. Waste. Manag. (1999) 19: 181-88.
[3] Xiao N, Qin L, Zhang X, Li Y, Zhang F. Industrial wastewater biological toxicity research status (2016).
[4] Mutamim NSA, Noor ZZ, Hassan MAA, Olsson G. Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review. Desalination (2012) 305: 1-11.
[5] Barakat M. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. (2011) 4: 361-77.
[6] Gehrke I, Geiser A, Somborn-Schulz A. Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl. (2015) 8: 1-17.
[7] Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H. An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng. (2016) 2016.
[8] Samanta H, Das R, Bhattachajee C. Influence of Nanoparticles for Wastewater Treatment-A Short Review. Austin. Chem. Eng. (2016) 3: 1036.
[9] Yunus IS, Harwin, Kurniawan A, Adityawarman D, Indarto A. Nanotechnologies in water and air pollution treatment. Environ. Technol. Rev. (2012) 1: 136-48.
[10] Shiraishi T, Tamada M, Saito K, Sugo T. Recovery of cadmium from waste of scallop processing with amidoxime adsorbent synthesized by graft-polymerization. Radiat. Phys. Chem. (2003) 66: 43-47.
[11] Shirzad-Siboni M, Khataee A, Joo SW. Kinetics and equilibrium studies of removal of an azo dye from aqueous solution by adsorption onto scallop. J. Ind. Eng. Chem. (2014) 20: 610-15.
[12] Yeom SH, Jung K-Y. Recycling wasted scallop shell as an adsorbent for the removal of phosphate. J. Ind. Eng. Chem. (2009) 15: 40-44.
[13] Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. (2014) 22: 64-75.
[14] Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed. Res. Int. (2013) 2013: 942916.
[15] Khosravi Y, Salimi A, Pourahmad J, Naserzadeh P, Seydi E. Inhalation exposure of nano diamond induced oxidative stress in lung, heart and brain. Xenobiotica. (2018) 48: 860-66.
[16] Winston GW. Oxidants and antioxidants in aquatic animals. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. (1991) 100: 173-76.
[17] Lee S, Tak E, Lee J, Rashid MA, Murphy MP, Ha J, Kim SS. Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell. Res. (2011) 21: 817-34.
[18] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. (1976) 72: 248-54.
[19] Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, Wang K. Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J. Inorg. Biochem. (2010) 104: 371-78.
[20] Faizi M, Salimi A, Rasoulzadeh M, Naserzadeh P, Pourahmad J. Schizophrenia induces oxidative stress and cytochrome C release in isolated rat brain mitochondria: a possible pathway for induction of apoptosis and neurodegeneration. Iran J Pharm Res. (2014)13:93-100.
[21] Sadegh C, Schreck RP. The spectroscopic determination of aqueous sulfite using Ellman’s reagent. MURJ. (2003) 8: 39-43.
[22] Zhang F, Xu Z, Gao J, Xu B, Deng Y. In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. Environ. Toxicol. Pharmacol. (2008) 26: 232-36.
[23] Bilińska L, Gmurek M, Ledakowicz S. Comparison between industrial and simulated textile wastewater treatment by AOPs – Biodegradability, toxicity and cost assessment. Chem. Eng. J. (2016) 306: 550-59.
[24] Ebrahiem EE, Al-Maghrabi MN, Mobarki AR. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab. J. Chem. (2017) 10: S1674-S79.
[25] Lu F, Astruc D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. (2018) 356: 147-64.
[26] Shirzad-Siboni M, Mohagheghian A, Vahidi-Kolur R, Pourmohseni M, Yang J-K. Preparation and characterization of Scallop shell coated with Fe3O4 nanoparticles for the removal of azo dye: Kinetic, equilibrium and thermodynamic studies. Indian J. Chem. Technol. (2018) 25: 40-50.
[27] Ho D, Wang CH, Chow EK. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. Sci. Adv. (2015) 1: e1500439.
[28] Karpeta-Kaczmarek J, Dziewiecka M, Augustyniak M, Rost-Roszkowska M, Pawlyta M. Oxidative stress and genotoxic effects of diamond nanoparticles. Environ. Res. (2016) 148: 264-72.
[29] Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int. J. Mol. Sci. (2017) 18.
[30] Dhanwal V, Katoch A, Singh A, Chakraborty S, Faheem MM, Kaur G, Nayak D, Singh N, Goswami A, Kaur N. Self-assembled organic nanoparticles of benzimidazole analogue exhibit enhanced uptake in 3D tumor spheroids and oxidative stress induced cytotoxicity in breast cancer. Mater. Sci. Eng. C. Mater. Biol. Appl. (2019) 97: 467-78.
[31] Elyoussoufi Z, Habti N, Motaouakkil S, Cadi R. Paraphenylenediamine induces apoptosis of Murine myeloma cells in a reactive oxygen species dependant mechanism. J. Toxicol. Environ. Health. Sci. (2012) 4: 76-84.
[32] Goyal S, Amar SK, Dubey D, Pal MK, Singh J, Verma A, Kushwaha HN, Ray RS. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation. J. Hazard. Mater. (2015) 300: 415-25.
[33] Zhou Y-j, Zhang S-p, Liu C-w, Cai Y-q. The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK1 cells. Toxicol. In Vitro. (2009) 23: 288-94.
[34] Pyatrikas DV, Fedoseeva IV, Varakina NN,
Rusaleva TM, Stepanov AV, Fedyaeva AV, Borovskii GB, Rikhvanov EG. Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions. FEMS. Microbiol. Lett. (2015) 362: fnv082.
[35] Bauer D, Werth F, Nguyen HA, Kiecker F, Eberle J. Critical role of reactive oxygen species (ROS) for synergistic enhancement of apoptosis by vemurafenib and the potassium channel inhibitor TRAM-34 in melanoma cells. Cell. Death. Dis. (2017) 8: e2594.
[36] Kamogashira T, Fujimoto C, Yamasoba T. Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. Biomed. Res. Int. (2015) 2015: 617207.